PROJECT #17604 RESEARCH FOR CANCER
FOLDING PERFORMANCE PROFILE
PROJECT SUMMARY
This project is an attempt at implementing umbrella sampling in Folding@home.
Umbrella sampling is a way of "pulling" the protein to new configurations by attaching a spring to specific atoms to move into a certain configuration. Identifying druggable states or exploring conformational state space relevant to disease is an existing challenge.
The embarassingly parallel nature of Folding@home allows us to massively scale up our exploration.
However, the underlying methods still rely on luck to a large extent – we must discover the states in work units as the dataset grows in size and more work units are run.
This can be an incredibly inefficient and slow process.
To help speed up state discovery and exploration, we can place 'springs' at regularly spaced intervals in our configuration space, and pull any independent simulation to one of these springs.
This "spring pulled simulation" is called Umbrella sampling (because the shape of the space explored around the spring looks like an parabola/umbrella).
With FAH, we can run multiple umbrellas at once, pulling each individual RUN to a unique point in conformational space independently of other RUNs.
In doing so we are able to massively scale up our sampling and discovery of unique states in a protein's conformational landscape. This project is identical in calculation to 16497, exploring conformations of MET kinase, involved in non-small-cell lung carcinoma, but acting as a test bed..
PROJECT INFO
Manager(s): Sukrit Singh
Institution: Memorial Sloan-Kettering Cancer-Center
Project URL: http://sukritsingh.github.io/
PROJECT WORK UNIT SUMMARY
Atoms: 59,897
Core: OPENMM_22
Status: Public
PROJECT FOLDING PPD AVERAGES BY GPU
PPDDB data as of Wednesday, 29 March 2023 06:15:38
Rank Project |
Model Name Folding@Home Identifier |
Make Brand |
GPU Model |
PPD Average |
Points WU Average |
WUs Day Average |
WU Time Average |
---|---|---|---|---|---|---|---|
1 | GeForce RTX 3080 Ti GA102 [GeForce RTX 3080 Ti] |
Nvidia | GA102 | 4,575,937 | 295,932 | 15.46 | 2 hrs 33 mins |
2 | GeForce RTX 3080 Lite Hash Rate GA102 [GeForce RTX 3080 Lite Hash Rate] |
Nvidia | GA102 | 4,368,945 | 285,082 | 15.33 | 2 hrs 34 mins |
3 | GeForce RTX 3090 GA102 [GeForce RTX 3090] |
Nvidia | GA102 | 4,114,919 | 286,098 | 14.38 | 2 hrs 40 mins |
4 | GeForce RTX 3090 Ti GA102 [GeForce RTX 3090 Ti] |
Nvidia | GA102 | 3,817,751 | 284,139 | 13.44 | 2 hrs 47 mins |
5 | GeForce RTX 3070 Ti GA104 [GeForce RTX 3070 Ti] |
Nvidia | GA104 | 3,657,410 | 277,678 | 13.17 | 2 hrs 49 mins |
6 | GeForce RTX 2080 Ti TU102 [GeForce RTX 2080 Ti] M 13448 |
Nvidia | TU102 | 3,589,676 | 272,186 | 13.19 | 2 hrs 49 mins |
7 | GeForce RTX 2080 Ti Rev. A TU102 [GeForce RTX 2080 Ti Rev. A] M 13448 |
Nvidia | TU102 | 3,344,915 | 269,869 | 12.39 | 2 hrs 56 mins |
8 | GeForce RTX 3070 Lite Hash Rate GA104 [GeForce RTX 3070 Lite Hash Rate] |
Nvidia | GA104 | 3,282,713 | 269,472 | 12.18 | 2 hrs 58 mins |
9 | GeForce RTX 2080 Rev. A TU104 [GeForce RTX 2080 Rev. A] 10068 |
Nvidia | TU104 | 3,187,731 | 262,933 | 12.12 | 2 hrs 59 mins |
10 | GeForce RTX 3070 GA104 [GeForce RTX 3070] |
Nvidia | GA104 | 3,041,036 | 261,837 | 11.61 | 2 hrs 4 mins |
11 | GeForce RTX 2080 Super TU104 [GeForce RTX 2080 SUPER] |
Nvidia | TU104 | 3,023,379 | 260,854 | 11.59 | 2 hrs 4 mins |
12 | GeForce RTX 3080 GA102 [GeForce RTX 3080] |
Nvidia | GA102 | 2,917,529 | 255,462 | 11.42 | 2 hrs 6 mins |
13 | GeForce RTX 3060 Ti Lite Hash Rate GA104 [GeForce RTX 3060 Ti Lite Hash Rate] |
Nvidia | GA104 | 2,687,927 | 239,680 | 11.21 | 2 hrs 8 mins |
14 | GeForce RTX 3080 Mobile / Max-Q 8GB/16GB GA104M [GeForce RTX 3080 Mobile / Max-Q 8GB/16GB] |
Nvidia | GA104M | 2,538,248 | 247,981 | 10.24 | 2 hrs 21 mins |
15 | Tesla P100 16GB GP100GL [Tesla P100 16GB] 9340 |
Nvidia | GP100GL | 1,995,937 | 228,227 | 8.75 | 3 hrs 45 mins |
16 | GeForce RTX 2060 TU104 [GeForce RTX 2060] |
Nvidia | TU104 | 1,967,842 | 221,795 | 8.87 | 3 hrs 42 mins |
17 | GeForce RTX 2070 Rev. A TU106 [GeForce RTX 2070 Rev. A] |
Nvidia | TU106 | 1,946,004 | 226,650 | 8.59 | 3 hrs 48 mins |
18 | GeForce RTX 3060 GA104 [GeForce RTX 3060] |
Nvidia | GA104 | 1,894,310 | 225,075 | 8.42 | 3 hrs 51 mins |
19 | GeForce GTX 1080 Ti GP102 [GeForce GTX 1080 Ti] 11380 |
Nvidia | GP102 | 1,863,995 | 222,433 | 8.38 | 3 hrs 52 mins |
20 | GeForce RTX 2060 Super TU106 [GeForce RTX 2060 SUPER] |
Nvidia | TU106 | 1,846,460 | 222,616 | 8.29 | 3 hrs 54 mins |
21 | GeForce RTX 3060 Lite Hash Rate GA106 [GeForce RTX 3060 Lite Hash Rate] |
Nvidia | GA106 | 1,484,044 | 204,930 | 7.24 | 3 hrs 19 mins |
22 | GeForce GTX 1660 SUPER TU116 [GeForce GTX 1660 SUPER] |
Nvidia | TU116 | 1,267,217 | 195,168 | 6.49 | 4 hrs 42 mins |
23 | GeForce GTX 1080 GP104 [GeForce GTX 1080] 8873 |
Nvidia | GP104 | 1,244,377 | 195,049 | 6.38 | 4 hrs 46 mins |
24 | GeForce GTX 1070 Ti GP104 [GeForce GTX 1070 Ti] 8186 |
Nvidia | GP104 | 1,219,206 | 195,927 | 6.22 | 4 hrs 51 mins |
25 | Quadro RTX 4000 TU104GL [Quadro RTX 4000] |
Nvidia | TU104GL | 1,186,194 | 191,663 | 6.19 | 4 hrs 53 mins |
26 | GeForce RTX 3060 Ti GA104 [GeForce RTX 3060 Ti] |
Nvidia | GA104 | 1,103,841 | 188,492 | 5.86 | 4 hrs 6 mins |
27 | GeForce GTX 1070 GP104 [GeForce GTX 1070] 6463 |
Nvidia | GP104 | 1,000,849 | 182,858 | 5.47 | 4 hrs 23 mins |
28 | Tesla M40 GM200GL [Tesla M40] 6844 |
Nvidia | GM200GL | 828,729 | 170,052 | 4.87 | 5 hrs 55 mins |
29 | GeForce GTX 1060 6GB GP106 [GeForce GTX 1060 6GB] 4372 |
Nvidia | GP106 | 713,177 | 161,802 | 4.41 | 5 hrs 27 mins |
30 | GeForce GTX 1660 TU116 [GeForce GTX 1660] |
Nvidia | TU116 | 682,918 | 158,940 | 4.30 | 6 hrs 35 mins |
31 | GeForce GTX 980 GM204 [GeForce GTX 980] 4612 |
Nvidia | GM204 | 611,049 | 153,261 | 3.99 | 6 hrs 1 mins |
32 | GeForce GTX 1060 3GB GP106 [GeForce GTX 1060 3GB] 3935 |
Nvidia | GP106 | 526,509 | 144,620 | 3.64 | 7 hrs 36 mins |
33 | GeForce RTX 3060 Mobile / Max-Q GA106M [GeForce RTX 3060 Mobile / Max-Q] |
Nvidia | GA106M | 466,687 | 68,863 | 6.78 | 4 hrs 32 mins |
34 | P106-090 GP106 [P106-090] |
Nvidia | GP106 | 317,692 | 123,593 | 2.57 | 9 hrs 20 mins |
35 | Quadro M4000 GM204GL [Quadro M4000] |
Nvidia | GM204GL | 302,035 | 121,967 | 2.48 | 10 hrs 41 mins |
36 | GeForce GTX 950 GM206 [GeForce GTX 950] 1572 |
Nvidia | GM206 | 217,537 | 109,035 | 2.00 | 12 hrs 2 mins |
37 | Quadro P1000 GP107GL [Quadro P1000] |
Nvidia | GP107GL | 182,001 | 100,942 | 1.80 | 13 hrs 19 mins |
38 | GeForce GTX 970 GM204 [GeForce GTX 970] 3494 |
Nvidia | GM204 | 173,115 | 109,619 | 1.58 | 15 hrs 12 mins |
39 | GeForce GT 1030 GP108 [GeForce GT 1030] |
Nvidia | GP108 | 41,778 | 52,740 | 0.79 | 30 hrs 18 mins |
PROJECT FOLDING PPD AVERAGES BY CPU BETA
PPDDB data as of Wednesday, 29 March 2023 06:15:38
Rank Project |
CPU Model |
Logical Processors (LP) |
PPD-PLP AVG PPD per 1 LP |
ALL LP-PPD (Estimated) |
Make |
---|